Thoroughly Describes Biological Applications, Computational Problems, and Various Algorithmic Solutions Developed from the authors own teaching material, Algorithms in Bioinformatics: A Practical Introduction provides an in-depth introduction to the algorithmic techniques applied in bioinformatics. For each topic, the author clearly details the biological motivation and precisely defines the corresponding computational problems. He also includes detailed examples to illustrate each algorithm and end-of-chapter exercises for students to familiarize themselves with the topics. Supplementary material is available at http://www.comp.nus.edu.sg/~ksung/algo_in_bioinfo/ This classroom-tested textbook begins with basic molecular biology concepts. It then describes ways to measure sequence similarity, presents simple applications of the suffix tree, and discusses the problem of searching sequence databases. After introducing methods for aligning multiple biological sequences and genomes, the text explores applications of the phylogenetic tree, methods for comparing phylogenetic trees, the problem of genome rearrangement, and the problem of motif finding. It also covers methods for predicting the secondary structure of RNA and for reconstructing the peptide sequence using mass spectrometry. The final chapter examines the computational problem related to population genetics.

Algorithms Bioinformatics Introduction Mathematical Computational Related Books

- **An Introduction to Bioinformatics Algorithms (Computational Molecular Biology)**

 This introductory text offers a clear exposition of the algorithmic principles driving advances in bioinformatics. Accessible to students in both biology and computer science, it strikes a unique balance between rigorous mathematics and practical techniques, emphasizing the ideas underlying algorithms rather than offering a collection of apparently unrelated problems. The book introduces biological and algorithmic ideas together, linking issues in computer science to biology and thus capturing th...

- **Python for Bioinformatics (Chapman & Hall/CRC Mathematical and Computational Biology)**

 Programming knowledge is often necessary for finding a solution to a biological problem. Based on the authors experience working for an agricultural biotechnology company, Python for Bioinformatics helps scientists solve their biological problems by helping them understand the basics of programming. Requiring no prior knowledge of programming-related concepts, the book focuses on the easy-to-use, yet powerful, Python computer language. The book begins with a very basic introduction that teaches...

 Emphasizing the search for patterns within and between biological sequences, trees, and graphs, Combinatorial Pattern Matching Algorithms in Computational Biology Using Perl and R shows how combinatorial pattern matching algorithms can solve computational biology problems that arise in the analysis of genomic, transcriptomic, proteomic, metabolomic, and interactomic data. It implements the algorithms in Perl and R, two widely used scripting languages in computational biology. The book provides...

- **Introduction to Computational Proteomics (Chapman & Hall/CRC Mathematical & Computational Biology)**

 Introduction to Computational Proteomics introduces the field of computational biology through a focused approach that tackles the different steps and problems involved with protein analysis, classification, and meta-organization. The book starts with the analysis of individual entities and works its way through the analysis of more complex entities, from protein families to interactions, cellular pathways, and gene networks. The first part of the book presents methods for identifying the build...
Unlike in the related area of bioinformatics, few books currently exist that document the techniques, tools, and algorithms of chemoinformatics. Bringing together worldwide experts in the field, the Handbook of Chemoinformatics Algorithms provides an overview of the most common chemoinformatics algorithms in a single source. After a historical perspective of the applications of algorithms and graph theory to chemical problems, the book presents algorithms for two-dimensional chemical structures...