Differential Equation Analysis in Biomedical Science and Engineering

Ordinary Differential Equation Applications with R

William E. Schiesser

Click Here to Download the eBook

Differential Equation Analysis In Biomedical Science And Engineering: Ordinary Differential Equation Applications With R is written by William E. Schiesser in English language. Release on 2014-03-17, this book has 440 page count that enclose
Features a solid foundation of mathematical and computational tools to formulate and solve real-world ODE problems across various fields. With a step-by-step approach to solving ordinary differential equations (ODEs), Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R successfully applies computational techniques for solving real-world ODE problems that are found in a variety of fields, including chemistry, physics, biology, and physiology. The book provides readers with the necessary knowledge to reproduce and extend the computed numerical solutions and is a valuable resource for dealing with a broad class of linear and nonlinear ordinary differential equations. The authors' primary focus is on models expressed as systems of ODEs, which generally result by neglecting spatial effects so that the ODE dependent variables are uniform in space. Therefore, time is the independent variable in most applications of ODE systems. As such, the book emphasizes details of the numerical algorithms and how the solutions were computed. Featuring computer-based mathematical models for solving real-world problems in the biological and biomedical sciences and engineering, the book also includes R routines to facilitate the immediate use of computation for solving differential equation problems without having to first learn the basic concepts of numerical analysis and programming for ODEs. Models as systems of ODEs with explanations of the associated chemistry, physics, biology, and physiology as well as the algebraic equations used to calculate intermediate variables. Numerical solutions of the presented model equations with a discussion of the important features of the solutions. Aspects of general ODE computation through various bioluminescence and engineering applications. Differential Equation Analysis in Biomedical Science and Engineering: Ordinary Differential Equation Applications with R is an excellent reference for researchers, scientists, clinicians, medical researchers, engineers, statisticians, epidemiologists, and pharmacokineticists who are interested in both clinical applications and interpretation of experimental data with mathematical models in order to efficiently solve the associated differential equations. The book is also useful as a textbook for graduate-level courses in mathematics, biomedical science and engineering, biology, biophysics, biochemistry, medicine, and engineering.

Differential Equation Analysis Biomedical Engineering Related Books

Differential Equation Analysis Set

Included in this set: Differential Equation Analysis in Biomedical Science and Engineering: Partial Differential Equation Applications with R

With the needed mathematical and computational tools, this book provides a solid foundation in formulating and solving real-world PDE problems in various fields from applied mathematics, engineering, and computer science to biology and medicine, includes supporting documentation and step-by-step guidance, and features R codes that can be easily and conveniently...

Introduction to Applied Statistical Signal Analysis, Third Edition: Guide to Biomedical and Electrical Engineering Applications (Biomedical Engineering)

Introduction to Applied Statistical Signal Analysis is designed for the experienced individual with a basic background in mathematics, science, and computer. With this predisposed knowledge, the reader will coast through the practical introduction and move on to signal analysis techniques, commonly used in a broad range of engineering areas such as biomedical engineering, communications, geophysics, and speech. Introduction to Applied Statistical Signal Analysis intertwines theory and implementation...
Signals and Systems Analysis In Biomedical Engineering

The interdisciplinary field of biomedical engineering requires its practitioners to master not only engineering skills, but also a diversity of material in the biological sciences. This text helps biomedical engineers strengthen their skills in the common network of applied mathematics that ties together these diverse disciplines. Based on the author's 30 years of experience in teaching as well as his personal research on neurosensory systems, Signals and Systems Analysis in Biomedical Engineering, Second Edition continues to provide a ready source of information on...

Signals and Systems Analysis In Biomedical Engineering, Second Edition

The first edition of this text, based on the authors 30 years of teaching and research on neurosensory systems, helped biomedical engineering students and professionals strengthen their skills in the common network of applied mathematics that ties together the diverse disciplines that comprise this field. Updated and revised to include new material as the field has grown, Signals and Systems Analysis in Biomedical Engineering, Second Edition continues to provide a ready source of information on...

Biomedical Engineering Principles - An Introduction to Fluid, Heat, and Mass Transport Processes (Biomedical engineering & instrumentation series)

Book by Cooney, David O.

Electromagnetic Analysis and Design in Magnetic Resonance Imaging (Biomedical Engineering)

This book presents a comprehensive treatment of electromagnetic analysis and design of three critical devices for an MRI system - the magnet, gradient coils, and radiofrequency (RF) coils. Electromagnetic Analysis and Design in Magnetic Resonance Imaging is unique in its detailed examination of the analysis and design of the hardware for an MRI system. It takes an engineering perspective to serve the many scientists and engineers in this rapidly expanding field. Chapters present:

Fractal Analysis of Breast Masses in Mammograms (Synthesis Lectures on Biomedical Engineering)

Fractal analysis is useful in digital image processing for the characterization of shape roughness and gray-scale texture or complexity. Breast masses present shape and gray-scale characteristics in mammograms that vary between benign masses and malignant tumors. This book demonstrates the use of fractal analysis to classify breast masses as benign masses or malignant tumors based on the irregularity exhibited in their contours and the gray-scale variability exhibited in their mammographic image...

Biomedical Engineering for Global Health (Cambridge Texts in Biomedical Engineering)

Can technology and innovation transform world health? Connecting undergraduate students with global problems, Rebecca Richard-Kortum examines the interplay between biomedical technology design and the medical, regulatory, economic, social and ethical issues surrounding global health. Driven by case studies, including cancer screening, imaging technologies, implantable devices and vaccines, students learn how the complexities and variation across the globe affect the design of devices and therap...

Related Topics

Signals Systems Analysis Biomedical Engineering

Differential Algebraic Equation System

Mathematical Modelling Using Differential Equation